Getting Closure: Exposing the Eyelid Overbite

28 11 2012

Blinking has always been known to have 2 purposes: 1) to clear away debris from the tear film and 2) to replenish the tear film to allow the cornea to remain a clear optical surface.  When we sleep, conventional wisdom suggests that the eyelids meet halfway and form a seal that prevents exposure of the cornea throughout the night.  Nocturnal lagophthalmos is an anatomical state whereby the superior and inferior lids fail to meet resulting in exposure of the conjunctival and corneal surfaces at night.  These patients typically present with symptoms of persistent dry eyes, recurrent corneal erosions, and often have a psychological impact due to constant questioning of their red eyes by family, friends and co-workers alike.   There is evidence that suggests that in the general population 1.4% of patients have some form of lagophthalmos.

A deeper look at the finer anatomical structures of the eyelid suggest that our blinks have a different purpose, and in fact may not be as efficient at closing the gap on our dry eyes.

Figure 1. Gross anatomy of the eyelid

The lids meeting is contingent on the anatomical reach of of lids, but as important is the seal created by the meeting of the superior and inferior line of Marx (LOM).   With reduction in lid laxity with age, changes in lid tension by blepharoplasty and less frequent and deliberate blinking with computer/smartphone/tablet use this ‘seal’ is not always present.  The result is an eyelid overbite, where the upper eyelid falls slightly anterior to the lower eyelid causing the LOM’s to miss each other and therefore no true touching of the upper lid to the lower lid.  An often overlooked function of the blink is to create a negative pressure to draw meibum or oil out of the meibomian glands (MG) when the lids touch.  If they don’t touch, then this negative pressure cannot stimulate expression of the oil from the gland and will create an oil deficient eye, susceptible to evaporative dry eye (EDE).  Over time, inactivity or reduced activity of the MG will result in stagnation of meibum and MGD ensues. Clinically, we can see this in various degrees within the symptomatic patient, however the asymptomatic patient has signs as well.

How can a practitioner determine if the lids are meeting microscopically?  Using a slit lamp and looking for smile staining on the cornea/conjunctiva  means looking for chronic signs of exposure, which aren’t always there in the early stages.  There is an onset of physiological changes within every disease and a simple use of a transilluminator will reveal a very telling sign.  Dr. Donald Korb OD FAAO, has used this technique in practice for years and it is now incorporated into every consultation I see in my dry eye clinic.  The example below demonstrates  the ‘light leakage’ sign indicating a break in the seal of a blink.  On SLE, this patient appears to have good closure and no obvious staining patterns were associate, however she presented with severe dry eye symptoms but normal aqueous production.  On identification of the broken seal, she was tested for non-obvious MGD (NOMGD) and lid wiper epitheliopathy (LWE) which was confirmed.

Figure 2. Leaking Light – sign of incomplete lid seal between upper and lower eyelid

This is the eye-equivalent of an overbite and is a telling indicator of exposure and potential future MG dysfunction.  These patients benefit from exposure therapy such as moisture chamber goggles, hyper-viscous topical agents at night, manual lid expression and regular assessment of the lid wiper and line of Marx for epithelial changes and accumulation.  Compression on the lid of  these patients should be done with caution as fine debris can enter the broken seal and abrade the cornea as well patients should be educated on corneal warpage post compression.

The micro anatomy and complex coordination of a blink can and in fact does break down with age, cosmetic surgery and with environmental factors.  Closer evaluation of the lid surface as it relates to chronic disease progression doesn’t require symptoms to be present.  The role of the primary eye care physician is to provide front-line care which helps in the prevention of eye disease.  Dry eye, having a population of 100 million globally , as stated by TFOS in 2011 may have it’s roots firmly planted in the lid.

In good health,

Dr. Richard Maharaj OD, FAAO

Release The Inner Sleuth: Investigating Retina

21 11 2012


Sir Arthur Conan Doyle’s fictional detective Sherlock Holmes used an investigational technique known as deductive reasoning to solve his cases.  Through a series of inferences based on limited information present, Holmes could distil the evidence down to tell the finest of details of a crime – or at least so Doyle had crafted his character to do.  This approach of deductive reasoning is in fact a fundamental part of what health care providers do in history taking; asking probing questions about a particular chief complaint and using that information to direct the examination.  On occasion clinicians are faced with very limited historical information and are left with the objective findings alone to decipher what is actually going on with a particular patient.  Language and cultural differences are just a few examples of barriers that can exacerbate miscommunication.  However under this circumstance, clinical skills can become the water in the desert that the practitioner needs to make the right clinical judgement. This case exemplifies how using technology, with a limited history and subjective findings, can lead one to the correct diagnosis


A 60 year old female of Egyptian heritage reported for a routine assessment.  She spoke her native language, Arabic, and had very limited verbal and written English proficiency.  Her pertinent medical history was difficult to obtain as she came alone and did not bring a list of medications or allergies.  The ophthalmic technician was able to obtain a partial history, whereby the patient had previously been to an eye doctor in the United States 3 times within the last 3 months.  She was not specific as to what procedures, if any, had been performed or for what reason she had assessed.  Her chief complaint was “foggy” vision over the left eye with a vague onset of 6 months.  This was obtained by having the patient flip through a calendar in her personal diary to show when she started having problems.    She gestured with her hands that she had “pressure” for which she was taking a pill.  This was assumed to be systemic hypertension under some sort of medical management.

Initial testing demonstrated visual acuities with habitual correction was OD 20/20-1  OS 20/40+1.   Pupils were equal and reactive with no APD noted.  EOMS were full and binocularity was unremarkable.  Amsler grid was unreliable due to communicative barriers.  Anterior segments were deep and quiet OU.  Corneas showed trace arcus OU and mild conjunctival injection OU.  Mild anterior blepharitis was present associated with meibomian gland dysfunction

Final refraction was pl -0.50 x 180 OD yielding 20/20-1 and +0.50 DS OS yielding 20/30-1.

Fluorocaine eye drops were administered OU followed by IOP measurements with Goldmann applanation.  OD and OS were equal at 12 mmHg and pachymetry readings were 556 and 560 microns OD/OS respectively.  One drop each of Mydriacyl 1% and Phenylepherine 2.5% was instilled OU.

Dilated ophthalmoscopy was completed using 90D lens and peripheral ophthalmoscopy with 28 D lens.  Optic nerves were both pink and healthy with healthy rim tissue OU. CD ratio of 0.20 OD/OS was measured.  Artery/venous ratio was observed OU to be 2/3.  Peripheral retina revealed no holes, breaks or tears OU.  Macula OS showed no reflex with 20 vague pale lesions extending superior to the macula  that were less than 125 microns in size (see Figure 1).  There was a resolving nerve fibre haemorrhage in the superior temporal quadrant as well.  There didn’t appear to be any findings consistent with edema, however additional imaging was ordered to rule this out.  OD retina was unremarkable.

Figure 1. OS fundus image.

To refine and extract more clinical information, the patient underwent fundus autofluorescence (FAF) as well as spectral domain OCT imaging to further investigate the metabolic state as well as the in vivo anatomical state of the macula

Figure2. FAF image OS. Note pattern of hypofluorescent signal

Figure 3. SD-OCT OS macula. Intraretinal fluid confirms edema

Based on the above imaging, the clinical picture became clearer.  FAF, demonstrated an evenly distributed pattern of over thirty scattered hypofluorescent circular areas that were concentric around a branch arteriole/venule.  Additionally, these areas were noted to be crossing superior to and encroaching on the superior macular region.  This decreased signal indicated a diminished presence and, in fact, an absence of lipofuscin in the area due to dead or atrophic RPE.   The even spacing and ‘intentional’ pattern suggested this was not physiological but likely induced.  OCT demonstrated a small pocket of fluid in the supramacular region at the inferior border of the FAF hypofluorescent spots.  This fluid explained the decreased vision noted and added to the sequence of events that preceded this visit.

A clinical hypothesis was reduced to the following:  The induced local areas of atrophic RPE were as a result of grid argon or krypton laser photocoagulation to treat a BRVO which was located superior to the macular region resulting in macular edema.  The superior occlusion likely resulted in local edema which was noted in the gravity dependent macula.  According to the Branch Retinal Vein Occlusion Study (BRVOS) grid laser was indicated in patients whose vision was reduced to at least 20/40 or worse secondary to edema within 3 to 18 months post-occlusion (1).  The OCT in this case demonstrated residual edema present which coincided well with the expected time frame of the patient’s first reported symptoms (6 months previous).  This time frame was also consistent with the last eye exam in the US from her previous physician.  Closer examination of the FAF pattern revealed a non-uniform pattern of hypofluorescent between laser scars.  This suggested that there were likely multiple laser treatments done at different times, resulting in chronological stages of atrophy between treatment zones.  Going back to our patient’s history, she reported 3 visits with her previous eye physician which corresponds to the multiple treatment theory.  Once vision was restored to the clinical endpoint above 20/40, laser treatments were no longer indicated and the patient was likely advised to return to follow up with routine care.

Using Multispectral Imaging (MSI), remnant nerve fibre hemorrhages were apparent in the area associated which are indicated by the arrows in figure 4.  All the clues had added to the clinical diagnosis of BRVO with macular edema.

Figure 4. MSI OS. Note resolving NFL haemorrhages

The clinical decision at this point was made to have the patient return with a family member who could confirm the hypothesis to then determine a course of action.  The patient and daughter returned 3 days later and confirmed the BRVO and laser treatments performed in the US.  The daughter produced a report describing the satisfactory result of reduced edema and improved BCVA to an ‘acceptable’ level.  Fluorescein Angiography was conducted at the time of initial diagnosis which confirmed capillary perfusion to the area.  Instructions were to follow the edema monthly until resolution or otherwise, which time may call for further grid laser.  The physician had considered a final treatment prior to discharge with subthreshold micropulse diode (SMD) laser photocoagulation.  This was not done however, given that the endpoint acuity was achieved.

In follow up, this patient’s residual edema had resolved evenly over the following 2 months and BCVA improved to a final 20/25.


There are multiple areas of discussion that arise out of this case.   The two most obvious of which are: 1) The pathology and management of BRVO and 2) The method of deductive reasoning and its role in diagnoses where limited pre-visit information is available.

BRVOs are the most common type of retinal occlusive events as noted in the Beaver Dam Eye Study (2).   The arterial vascular supply to the retina drains into the venous system which carries back to the central retinal vein.  In a BRVO, a blockage at the venous level results in a backup into the capillary and arterioles that feed the drainage system.  This back up results in a leakage of blood and fluid into the intraretinal space and the site of occlusion determines the extent of the bleeding and edema.  Smaller veins result in quadrantal occlusions with larger veins resulting in hemispheric.  The site of occlusion generally occurs at the most proximal and central area of an artery crossing a vein.  Depending on the relative location of the BRVO to the macula, the risk of macular edema increases.  Superior BRVO’s are subject to the effects of gravity drawing the intraretinal fluid downward into the macular space (3).

The natural history of BRVO can be self-limiting, however risk of neovascularization and edema determine the need for intervention (3).  The likelihood of visual recovery without intervention to better then 20/40 was low according to the Center of Eye Research in Melbourne Australia (3).  Most predictive of a good recovery is the more distal the location of occlusion to the disc (BRVOS) in addition to the lack of non-perfusion on angiography studies (1).  If the area involved was shown to be ischemic, then the effect of intervention was limited with a guarded prognosis (1).

The Branch Retinal Vein Occlusion Study is the only multicenter randomized prospective trial from which treatment guidelines were derived.  The criteria included, but not limited to, vision below 20/40, capillary perfusion to the affected area, sufficient clearing of haemorrhage and angiography confirming leakage involving the fovea.  Eyes were randomized to argon grid laser vs. a control group and were followed to completion at 3 years.  The concluding findings of the study demonstrated that intervention with grid laser resulted in improved vision above threshold (20/40) and reduced risk of neovascularization (1).

The standard used in the BRVOS was the argon laser which causes photocoagulation to the retina by absorbing radiant energy causing protein denaturation in the region (4).  Laser energy initially is converted into heat mainly in the melanin of the RPE cells and choroidal melanocytes. Traditional laser burns create a radial wave of heat from the origin of the burn site within the RPE and/or choroid.   The discoloured grayish endpoint in conventional threshold photocoagulation signals that overlying neurosensory retina has been reached by the heat wave at a temperature high enough to damage the natural transparency of the retina (5).

The biological effect of the laser is unlikely in the cauterization of microaneurysmal changes, but rather the upregulation of biochemical mediators with antiangiogenic activity, such as pigment epithelium derived growth factor (PEDF) (6).  Additionally, the laser burns stimulate factors that activate inhibitors of vascular endothelial growth factor-angiogenesis and reduce VEGF inducers thereby reducing vascular permeability (7).

Subthreshold micropulse diode laser photocoagulation (SMD) is designed to target the RPE melanocytes while avoiding photoreceptor damage.  The term ‘subthreshold’ denotes the energy level of the laser being below which visible damage to neurosensory retina would occur. This results in no visible damage to retina either ophthalmoscopically or by FAF or angiography.  In these instances, history would be the only means to determine if SMD was used to treat (8).  One study compared the effect of SMD grid photocoagulation to conventional threshold grid photocoagulation in 36 eyes with macular edema secondary to BRVO. The number of SMD laser spots required to achieve endpoint was higher than threshold laser.   However at 2 years post treatment,  the SMD group had a 3 line or more gain in acuity (ETDRS) in 59% of eyes vs. 26% in the threshold group (9).  SMD, by having a reduced collateral effect, may be indicated for longer term stability and improved efficacy in certain cases and likely the rationale for the treating physician’s recommendation for a final treatment using SMD in his report.

Intravitreal injection of triamcinolone has been used to treat macular edema of different etiologies because of its potent anti-permeability and anti-inflammatory properties.   A few cases of macular edema secondary to BRVO treated with an intravitreal triamcinolone injection have been reported. The exact dose remains unclear however doses ranging from 4 mg to 25 mg have been reported to be effective (10).

AvastinTM (Bevacizumab) has been involved in several small retrospective and uncontrolled case series which suggest that intravitreal injections at doses up to 2.5 mg are effective in improving visual acuity and reducing macular edema secondary to BRVO. These results are often seen within 1 month of injection; however, most of the eyes required additional injections to maintain the effects of bevacizumab (11) (12).

From the above example, a case can certainly be made for the use of thorough testing to unveil a diagnosis, but what is likely more crucial are the small pieces of history that were obtained.   Combining this information and correlating it with the evidence presented by clinical exploration allows the full history to unfold.  Deductive reasoning in this examplewas the final diagnostic tool to give the most appropriate course of action for this patient.  It is possible that, without the historical information and deduction, this patient may have been referred for intravenous fluorescein angiography (IVFA) for further invasive scrutiny of the retina.  IVFA of course has known side effects that range from nausea to cardiac arrest.  By working through the case backwards, this unnecessary step was avoided and appropriate observation was indicated.


Current discussions in all clinical practices revolve around standards of care and how clinicians can rise to that standard.  One question illustrated by this case is, ‘is a standard enough?’   Is common ground the best way to drive health care decisions?  Establishing a standard requires common agreement of the majority of a spectrum of clinicians based on current evidence and available tools.   However in this scenario where the common denominator dictates what practitioners should and should not do, this actually reduces the standard to, arguably, a lower quality of care.   Individual standards give the practitioner the opportunity to think outside the box and truly reach a higher calibre of care.  In that context, using an intuitive tool like deductive reasoning, which, according to Piaget’s theory of cognitive development is established as early as shortly after birth, can turn a lack of communication from a patient into an opportunity to solve a mystery (13).  This can turn the average eye care provider into a sleuth with seemingly extraordinary powers; a superhero among all.


1. Argon laser photocoagulation for macular edema in branch vein occlusion. Group, The Branch Vein Occlusion Study. 3, 1984, Am J Ophthalmol, Vol. 98, pp. 271-282.

2. The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study. Klein R, Klein BE, Moss SE, Meuer SM. 2000, Trans Am Ophthalmol Soc, Vol. 98, pp. 133-143.

3. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Rogers SL, McIntosh RL, Lim L, Mitchell P, Cheung N, Kowalski JW, Ngueyn HP, Wang JJ, Wong TY. 6, June : s.n., 2010, Ophthalmology, Vol. 117, pp. 1094-1101.

4. Laser-tissue interaction studes for medicine. GR, Kulkarni. 1988, Bulletin Mat Sci, Vol. 11, pp. 239-244.

5. Micropusled diode laser therapy: evolution and clinical application. Sivaprasad S, Elagouz M, McHugh D et al. 6, Nov 2010, Surv Ophthalmol, Vol. 55, p. 516.

6. Upregulation of pigment epithelium-derived factor after laser photocoagulation. Ogata N, Tobran-Tink J, Jo N, et al. 3, Mar 2001, Am J Ophthalmol, Vol. 132, pp. 427-429.

7. Effect of pan retinal photocoagulation on the serum levels of vascular endothelial growth factor in diabetic patients. Manaviat MR, Rashidi M, Afkhami-Ardenkani M, et al. 4, Aug 2011, Int Ophthalmol, Vol. 31, pp. 271-275.

8. Short-pulse laser treatment: redefining retinal therapy minimizing side effects without compromising care. Paulus YM, Palanker D, Blumenkranz MS. Jan-Feb 2010, Retinal Physician, pp. 54-59.

9. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse ingrared (810 nanometer). Parodi MB, Spasse S, Iacono P, et al. 12, Dec 2006, Ophthalmology, Vol. 113, pp. 2237-2242.

10. Intravitreal triamcinolone acetonide injections in the treatment of retinal vein occlusions. Roth, DB, Cukras C, Radhakrishnan R, Feuer WK, Yarian DL, Green SN. 6, Nov-Dec 2008, Ophthalmic Surg Lasers Imaging, Vol. 39, pp. 446-454.

11. One-year results after intravitreal bevacizumab therapy for macular edema secondary to branch retinal vein occlusion. Jaissle GB, Leitritz M, Gelisken F, Ziemssen F, Bartz-Schmidt KU, Szurman P. 1, Jan 2009, Graefes Arch Clin Exp Ophthalmol, Vol. 247, pp. 27-33.

12. Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-month results of a prospective clinical trial. Prager F, Michels S, Kriechbaum K, Georgopoulos M, Funk M, Geitzenauer W. 4, Apr 2009, Br J Ophthalmol, Vol. 93, pp. 452-456.

13. JW, Santrock. A Topical Approach to Life Span Development. New York : McGraw-Hill, 2008. pp. 221-223.

Is ‘Standard’ of care enough? AMD through the lens of Fundus Autofluorescence

6 11 2012

In optometric practice, the AMD demographic is rising as the baby-boomers balloon the aging population. AMD being the complex condition it is requires a comprehensive evaluation of all factors involved from the patient’s family and medical history all the way to the metabolic functioning of the basal layer of RPE cells. Ophthalmological evaluation in addition to visual functioning has been the gold standard of care until the emergence of in vivo dissection techniques offered by optical coherence tomography. OCT has opened the doorway to allowing primary care providers with the ability to decipher the need for tertiary intervention. In the vast majority of AMD patients that fall into the dry category, management of these patients can be scrutinized down to a metabolic level. Current understanding of the disease as an inflammatory condition has opened a new realm of pharmaceutical development that targets inflammatory precursors to prevent further degradation. The ENVISION CLARITY trial, for example, involves a vision cycle modulator (VCM) called acu-4429 which inhibits the disproportionate accumulation of A2-E in the post-mitotic RPE .  In pursuit of new therapies for diseases like AMD, the landscape of eye care is changing below our feet.

A 'normal' digital fundus image

A ‘normal’ digital fundus image

Fundus Autofluorescence of the same eye

Fundus Autofluorescence of the same eye revealing moderate AMD

… when the common denominator dictates what practitioners should and should not do, this actually reduces the standard of care to, arguably, a lower calibre of care

Dry AMD or non-exudative AMD has been reported to make up some 85-90% of AMD, the remainder being comprised of the exudative form. In recent years, research has pointed to disregulation of local inflammatory factors as the main contributor to AMD. AMD is known as a polygenic disease giving each individual multiple sequences to increase the risk of developing the condition.

Considering the inflammatory role of the disease, the metabolism of the RPE becomes an important indicator of local tissue health; specifically the accumulation of lipofuscin as a by-product of the RPE. Fundus autoflurescence (FAF) can therefore demonstrate the concentration and distribution of associated lipofuscin which correlates to the condition of the RPE in AMD patients . A dark area or hypofluoresced area demarks atrophic RPE as the major fluorophore is absent in this area. Hypo areas may also be a result of overlying haemorrhagic changes, increased melanotic tissue and the presence of subretinal fluid.

Hypo and hyperfluoresced areas in FAF can migrate from one to the next, depending on the local state of the tissue. Pigment epithelial and neurosensory detachment and areas with extracellular fluid accumulation associated with exudative lesions can be observed in FAF as increased or decreased signal. Fluid accumulation under pigment epithelium detachment, extracellular deposition of material under the RPE (drusen), and fluid originated from CNV can occur with increased, normal or decreased FAF intensity . It is always important to rely on multiple modalities of imaging to correlate FAF findings.

Once the advanced state of the disease is confirmed, a risk assessment results in the need for intervention. AREDS, a widely accepted study, looked at the natural history of AMD and also studied the modified risk of a specific pharmacological dose of nutritional supplements on the progression to advanced forms of AMD. The findings suggested that a combination dose of zinc, copper, Vitamin C, E and beta-carotene resulted in a risk reduction of 25% of disease progression and a 19% risk reduction of moderate vision loss (defined by ETDRS) over 5 years.

AREDS 2, which will be completed by 2013 was undertaken to extend the risk reduction protocol to include omega 3 (DHA and EPA) in addition to lutein and zeathanthin . Also, the question of whether beta-carotene should be included is being assessed as studies have shown that beta-carotene used with vitamin E in smokers has statistically significant risk of developing lung cancer. Although results haven’t been released, pharmaceutical companies have released versions of these supplements consistent with AREDS 2 to include both the omega-3 and lutein and zeathanthin (10mg lutein/2mg zeaxanthin and 350mg DHA/650mg EPA).

The availability of technologies like FAF will make them integral components of primary eye care. New therapeutics will only be as effective as the technology quantifying its efficacy by means of measuring the metabolic state of the retina.  Current discussions in all clinical practices revolve around standards of care and how clinicians can rise to that standard. One question that arises:  is a standard enough?  Is common ground the best way to drive health care decisions? Establishing a standard requires common agreement of the majority of a spectrum of clinicians based on current evidence and available tools. However in this scenario when the common denominator dictates what practitioners should and should not do, this actually reduces the standard of care to, arguably, a lower calibre of care. Individual standards give the practitioner the opportunity to think outside the box and truly reach a higher calibre of care.

Dr. Richard Maharaj OD, FAAO

‘Plaque’ on your eyelids? Cleaning for your eyes not just your teeth

29 10 2012

The prevention of tooth decay and gingivitis has been a long established practice in Dentistry.  The first American to patent a toothbrush was H. N. Wadsworth and many American companies began to mass-produce toothbrushes after 1885.  The practice of minimizing and removing plaque has become common knowledge and both the at home maintenance as well as the in office components to teeth cleaning have become part of our culture.  The knowledge of gum disease by the individual is pervasive which helps to promote good oral health in the general North American public.

But what about our eyes?  Little common knowledge exists on lid disease and how lid hygiene is proving to be a critical point in the prevention of glandular dysfunction of the lids as well as chronic inflammation which leads to dry eye disease (DED).  What we do know is that symptoms in the majority of cases exist well past the onset of the disease itself.  Eye doctors are well equipped with tools to help identify and in fact manage the early manifestations, but don’t even realize this therapy exists.  In fact, only recently at the American Academy of Optometry during the Section on Cornea, Contact Lenses and Refractive Technologies Symposium delivered by Dr. Kelly Nichols and  Dr. Caroline Blackie OD PhD did the concept of lid staining and cleaning actually enter the realm of management options for meibomian gland dysfunction (MGD) and evaporative dry eye.

The Line of Marx (LOM), which is an anatomical junction between the wet conjunctiva of the inner eyelid and the dry lid surface, can only be visualized using vital dyes like fluorescein, Rose Bengal or Lissamine Green.  In healthy younger eyes, this line is uniform and thin running the span of the upper and lower eyelid.  It runs behind the meibomian gland orifice (MGO) or opening.  In the aging eye, and eyes that have a pro-inflammatory environment such as a dry eye with hyperosmolar tears or higher concentrations of biomarkers such as MMP-9, this region can thicken and run through or even past the MGO.    In fact, in hyperosmolar tears, LOM can provide a solute gradient that is a pathway for mediators of cell death and inflammatory proteins directly to the MGO thereby advancing MGD and decreasing the meibum quality before_afterLOMdebrideand likely contributing to obstruction of the gland (Bron, et al 2011, The Ocular Surface).

Meibomian gland dysfunction (MGD) is a chronic, diffuse abnormality of the meibomian glands, commonly characterized by terminal duct obstruction and/or qualitative/ quantitative changes in the glandular secretion. It may result in alteration of the tear film, symptoms of eye irritation, clinically apparent inflammation, and ocular surface disease.

Dr. Caroline Blackie  OD PhD


The build up of epithelial debris or ‘plaque’ at the LOM can be easily viewed with vital dyes as seen in the image above.  Like the plaque on your teeth, the physiological insult of this ‘dead skin’ build up on this tissue results in further degradation of the LOM and therefore creating a stronger path to the MGO.  We see this natural thickening of LOM in the aging eye (Yamaguchi et al, 2006,  Am J Oph), however in patients with evaporative dry eye, this thickening is accelerated.

A simple in office procedure under optional topical anesthetic can be performed by an ophthalmologist or optometrist to promote a healthy lid surface and therefore maintain the health of the oil glands in the eye lids – this inevitably will help to decrease the risk of developing the most common type of dry eye – evaporative dry eye reported in some cases to be part of 87% of dry eye patients.

Lid cleanings should be added to the eye care recipe for good ocular health in a semi-annual fashion (every 6 months) in all patients particularly (but not limited to) contact lens wearers, patients with dry eye symptoms, psoriasis, 50+ patients and female patients.  Being a separate procedure altogether, patients should be aware of specialty fees associated with the service being provided, not unlike that observed in dentistry.  Please note that this is VERY new to eye care and may not routinely performed in general clinics so please seek out your nearest dry eye or ocular surface disease facility which may be better equipped to manage of the micro-anatomy of the eye lid and associated conditions.

Dr. Richard Maharaj OD, FAAO

Director of Optometry,

eyeLABS Inc.

Dry Eye Quarterly – First issue!

13 09 2012

First edition of Dry Eye Quarterly – see clinical trial results from eyeLABS dry eye clinic. 88% of patients treated with symptomatic relief and 100% of patients have significant clinical improvement after only 1 month!